Computational Intelligence and Modeling Research Group
Description
Process modeling using artificial intelligence and machine learning algorithms, designing and implementing computer systems and cyber-physical systems. Utilizing optimization methods to solve engineering problems, including in the analysis and segmentation of microstructure images using convolutional networks. Numerical methods for modeling materials and processes, including digital process twins. High-performance stochastic models for predicting the microstructure of metallic materials and modeling electron and positron diffraction. NLP tools and ontologies for concept identification in technical language. Optimization methods for mechanical properties of materials.
Laboratories:
Computer labs
Projects:
Cooperation:
Lodz University of Technology, Department of Material Technologies and Production Systems
TUBAF Bergakademie Freiberg, Institute of Metal Forming
Diagnostyka S.A.
Clinical Pulmonology Department of the University Hospital in Krakow
Polish Society of Surgical Oncology
Arcelor Mittal Poland
CMC
StalProdukt
Konstruktion
Vesuvius
Alventa
Diagnostyka S. A.
MiViA Gmbh
Virtline
GE Aviation
Cognizant/Mobica
ACMiN AGH
RWTH Aachen
Contact
12 617 41 31
Leading unit
Faculty of Metals Engineering and Industrial Computer Science
-
Department of Applied Computer Science and Modelling
Team leader
Regulski KrzysztofTeam members
- Szeliga Danuta
- Rauch Łukasz
- Kusiak Jan
- Pietrzyk Maciej
- Banaś Krzysztof
- Mitura Zbigniew
- Pernach Monika
- Wilk-Kołodziejczyk Dorota
- Macioł Piotr
- Bzowski Krzysztof
- Opaliński Andrzej
- Sztangret Łukasz
- Wilkus Marek
- Hajder Piotr
- Nadolski Rafał
- Jędrysik Wojciech
- Jażdżewski Tomasz
- Hallo Filip
- Marcjan Łukasz
- Kokosza Łukasz
- Gajoch Sandra
- Foryś Jakub
IDUB research areas
- Intelligent information, telecommunication, computer, and control and operation technologies
Keywords
artificial intelligencemachine learningprocess modelingcyberphysical systemssoftware architecturesoptimizationmicrostructure recognition and segmentationnumerical methodsdigital twinsmultiscale stochastic numerical modelsmaterials properties modeling and optimizationapplication of NLP toolsontologies